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The filtering of point clouds is a ubiquitous task in the processing of airborne laser scanning (ALS) data;
however, such filtering processes are difficult because of the complex configuration of the terrain fea-
tures. The classical filtering algorithms rely on the cautious tuning of parameters to handle various land-
forms. To address the challenge posed by the bundling of different terrain features into a single dataset
and to surmount the sensitivity of the parameters, in this study, we propose an adaptive surface filter
(ASF) for the classification of ALS point clouds. Based on the principle that the threshold should vary
in accordance to the terrain smoothness, the ASF embeds bending energy, which quantitatively depicts
the local terrain structure to self-adapt the filter threshold automatically. The ASF employs a step factor
to control the data pyramid scheme in which the processing window sizes are reduced progressively, and
the ASF gradually interpolates thin plate spline surfaces toward the ground with regularization to handle
noise. Using the progressive densification strategy, regularization and self-adaption, both performance
improvement and resilience to parameter tuning are achieved. When tested against the benchmark data-
sets provided by ISPRS, the ASF performs the best in comparison with all other filtering methods, yielding
an average total error of 2.85% when optimized and 3.67% when using the same parameter set.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

Airborne Laser Scanning (ALS) systems present promising alter-
natives to traditional airborne photogrammetry (Wehr and Lohr,
1999; Zhang et al., 2003; Vosselman and Maas, 2010) in the gener-
ation of Digital Elevation Models (DEMs), surface reconstructions,
environmental surveys and many other applications (Haala and
Kada, 2010; Mongus and Žalik, 2012; Hauglin et al., 2013). Because
the raw data consist of a combination of the significant number of
points returned from diverse terrain features (e.g., ground, build-
ings, vegetation and other objects), before being adapted to many
other applications, ground and non-ground points must be sepa-
rated first. This process is referred to as ALS points filtering (Meng
et al., 2010). The filtering of ALS data is a particularly demanding
task because the data normally cover large areas and various types
of surface objects. Previous related publications indicate that ALS
data filtering is an extraordinarily difficult task (Sithole and Voss-
elman, 2004) and is still currently actively under investigation
(Mongus and Žalik, 2012; Véga et al., 2012; Chen et al., 2013; Li,
2013; Maguya et al., 2013; Pingel et al., 2013; Zhang and Lin,
2013). Because more ALS datasets are becoming readily available,
an innovative ALS filtering algorithm with improved and stable
performance is urgently needed to reduce the amount of time-con-
suming manual editing (Flood, 2001; Chen et al., 2013).
1.1. Filtering strategies

Various types of filtering methods have been proposed. Based
on the filter strategies, these algorithms can be grouped into four
major categories (Liu, 2008; Meng et al., 2010): interpolation-
based (Kraus and Pfeifer, 1998; Axelsson, 2000; Evans and Hudak,
2007; Mongus and Žalik, 2012; Chen et al., 2013), slope-based
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(Vosselman, 2000; Sithole, 2001), morphological-based (Zhang
et al., 2003; Chen et al., 2007; Li, 2013; Pingel et al., 2013) and seg-
mentation/cluster-based filters (Filin, 2002; Sithole and Vosselman,
2005; Zhang and Lin, 2013). For the interpolation-based methods,
the initial ground points are selected and then densified iteratively
to create a provisional surface that gradually approaches the final
ground surface. The slope-based methods are based on the
assumption that the gradient of the ground is obviously smoother
than that of non-ground objects (Sithole, 2001), and the threshold
to distinguish ground from non-ground points is determined by a
monotonically increasing kernel function (Vosselman, 2000). For
the morphological-based methods, the mathematical morphology
operations, e.g., dilation and erosion, are exploited to process the
Digital Surface Model (DSM) (Zhang et al., 2003), and the non-
ground objects can be removed by using a combination of the basic
operations. The methods in the last category generally cluster the
dataset in the feature space into some segments, for which normal
vector and elevation differences in the neighborhood are two
appropriate measurements (Filin, 2002; Zhang and Lin, 2013).
Subsequently, the premise that points in the same cluster should
share the same label can be used to enhance the classification.

Sithole and Vosselman (2004) presented an experimental com-
parison of the performance of eight filtering algorithms. The
authors concluded that the interpolation-based filters often out-
perform the other methods in the handling of complex terrain be-
cause the sophisticated interpolation methods can partially handle
various terrain features. Therefore, the interpolation-based ap-
proach is exploited in this study. In the following subsection, we
do not provide an exhaustive review of all of these methods but in-
stead highlight only the interpolation-based filters that are directly
relevant to our work in the next subsection.

1.2. Interpolation-based filters

The linear prediction approach presented by Kraus and Pfeifer
(1998) was an early investigation of an interpolation-based filter
used to create a DEM in a wooded area. In the interpolation proce-
dure, a weight, which ranges from 0 to 1.0, is assigned to each
point. Starting with a grid surface interpolated with identity
weights, the weights are determined by the residual between the
elevation of the point and the interpolated surface. A dual trun-
cated decreasing function is adopted, so points with residuals
smaller than a lower bound are awarded maximum weights and
those higher than an upper bound are penalized with zero weights,
which will not contribute to the ground surface. In this manner, the
weights and ground surfaces are both iteratively refined. Pfeifer
et al. (2001) extended the method to a hierarchic scheme with a
data pyramid to accelerate the filtering process. In addition, be-
cause the coarse level grids (top-level) in the data pyramid are
more likely to be ground points, as they are the local minimum
in a larger window, the hierarchical pyramid scheme can offer a
more robust ground surface estimation. The data pyramid is com-
monly built in a quad-tree structure, in which a node in the upper
level is linked to four nodes in the lower level, but we have noticed
that making the pyramid move slowly to the bottom level will pro-
vide more accurate results (cf. Section 2.2). The iteration strategy
adopted in the method is based on refining the weight assignment.
However, other methods that iterate with the densification of
ground points have exhibited better performances. Axelsson
(2000) provided a groundbreaking report on ALS filtering based
on a Triangulated Irregular Network (TIN), also referred to as Pro-
gressive TIN Densification (PTD) (Zhang and Lin, 2013). Although
the original progressive TIN surface filter has provided promising
work with excellent performance (Sithole and Vosselman, 2004),
it turns out that optimization details, which were kept proprietary
in the original PTD approach by Axelsson (2000), have great im-
pacts on algorithm accuracies (Zhang and Lin, 2013). Most investi-
gations tend to use a gridded surface with more sophisticated
interpolation methods, which can also achieve comparable results
(Mongus and Žalik, 2012; Chen et al., 2013).

Recently, an interpolation-based method using the Thin Plate
Spline (TPS) approach as the interpolant was demonstrated to be
experimentally more suitable for ALS filtering compared with
other interpolation techniques, e.g., Kriging, Inverse Distance
Weighting (IDW) and TIN, according to the work by Evans and
Hudak (2007). The authors introduced a multiscale curvature
classifying (MCC) algorithm for the filtering of ALS data. In contrast
to representing the ground surface with TIN (Axelsson, 2000), MCC
employs regular gridded DEM. After selecting the initial ground
points, these points were used to interpolate a raster surface with
TPS for the first scale, and then, unclassified points were tested
against the average elevation of the 3 � 3 neighbors in the DEM
similar to the work by Haugerud and Harding (2001). The points
were classified as ground, if the elevation difference was less than
a given threshold. The process was repeated until no more points
were added into ground points. Then, the process moved on to
the next resolution. For a larger resolution, a scale gain (0.1 m)
was added to the curvature threshold to address the effect of
changes in slope (Chen et al., 2013). Three scales were used in total,
and they were determined as 0.5w, w, and 1.5w. The curvature
threshold was t, t + 0.1, and t + 0.2, respectively, where w and t
are the user-defined initial scale and threshold, respectively. Chen
et al. (2013) proposed a similar method with multi-scale TPS inter-
polation, and by performing tests against the benchmark dataset
supplied by the ISPRS Commission, the authors demonstrated the
outstanding performance of TPS interpolation in ALS filtering.
Although the interpolation-based method with TPS described
above (Evans and Hudak, 2007; Chen et al., 2013) adopted three
levels of interpolated scale, the points were not prepared in the
pyramid structure. At each scale, all points were tested against a
curvature threshold instead of processing in the coarse-to-fine se-
quence. Furthermore, Mongus and Žalik (2012) presented a TPS
interpolation-based algorithm without parameter tuning. After
building a data pyramid of the point clouds, a surface is interpo-
lated iteratively from the coarsest level toward the finest level.
The removal of parameter tuning is achieved based on the statisti-
cal information of the elevation residuals between points and DEM.
The benchmark tests demonstrated that the method exceeded the
performance of the software standard, even with automatically
determined parameters.

1.3. The ASF approach

As described above, most of the previous studies have deter-
mined the filter threshold using elevation information only, and
the threshold remained the same for a single dataset, even with
various terrain features. Most algorithms achieve arguably
excellent performance when applied to consistent and plain areas,
but the filters remain problematic when faced with complex
shapes/configurations and significant discontinuities (Sithole and
Vosselman, 2004). Multiple factors can account for the problem,
with the major factor likely being the complexity of the landform.
In fact, the challenge of handling different terrain features bundled
into a single dataset has already been explored in previous works
(Sithole and Vosselman, 2004; Zhang and Lin, 2013). For example,
in an actual filtering problem, the region may contain low objects
or vegetation on flat surfaces in addition to sharp ridges or scarps
on rough surfaces. The varying features must be handled by
different filtering thresholds. A small threshold should be assigned
to de-spike the low objects, and a larger threshold should be
applied to retain the ground points on the tops of ridges or on
the edges of scarps. Sithole and Vosselman (2004) proposed the
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use of additional contexts to address this problem. Two types of
implementations have been attempted, including (a) segmenting
the point clouds into a smooth surface in the preprocessing stage
and then classifying the segments (Filin, 2002; Zhang and Lin,
2013) and (b) using elevations in a 3 � 3 neighborhood during
the filtering process rather than only one grid (Haugerud and
Harding, 2001; Evans and Hudak, 2007; Chen et al., 2013).

To improve the filter performance and robustness with respect
to complex scenes, in this study, we propose a novel adaptive sur-
face filter (ASF) for ALS data processing. Compared with previous
works (Evans and Hudak, 2007; Mongus and Žalik, 2012; Chen
et al., 2013), the proposed method has the following three innova-
tive aspects. (1) The ASF controls the initialization of the levels for
the data pyramid using a step factor instead of the quad-tree struc-
ture, which interpolates the raster surface to gradually approach
the ground surface and improve the robustness of the algorithm
(cf. Section 2.2). (2) Regularization is used to overcome noise dur-
ing interpolating TPS surfaces using progressively densified ground
points to the final ground (cf. Section 2.3). (3) A bending energy
function that explicitly depicts the surface smoothness is used
and embedded in the algorithm for adaptive threshold determina-
tion (cf. Section 2.4). The raster surface and the bending energy are
integrated to label the remaining unclassified points as either
ground or non-ground.

The rest of the paper is structured as follows. Section 2 provides
the ASF algorithm details, including the preprocessing and filtering
algorithm. Furthermore, the implementations of step factor,
regularization and bending energy are also presented in this
section. Then, the performance is evaluated qualitatively and quan-
titatively against benchmark datasets provided by ISPRS (http://
www.itc.nl/isprswgIII-3/filtertest) using the evaluation paradigm
put forth by Sithole and Vosselman (2004) in Section 3. This
section also analyzes the effects of the parameters used in our
algorithm. Conclusions are then presented in the last section.

2. Methods

2.1. The adaptive surface filtering method

Three contributions of the implementation details with respect
to the interpolation-based method using TPS distinguish the ASF
method from its predecessors (Evans and Hudak, 2007; Mongus
and Žalik, 2012; Chen et al., 2013) in terms of its increased robust-
ness and stability when handling complex terrains and outperform-
ing other filters. First, we use a step factor to control the window size
between adjacent pyramid levels instead of a quad-tree structure.
Therefore, the provisional surface will move slowly but more ro-
bustly to the final ground. Second, regularization is used in the TPS
interpolation to relieve the impacts from noise points in the iterative
procedure. The effect of regularization is adjusted by a parameter k,
which controls the weights between the fitness of the data and the
smoothness of the surface (Terzopoulos, 1988). Third, the bending
energy, generated as the by-product of the TPS interpolation, is
exploited to enable the threshold to adaptively change in accordance
with the terrain variations. The bending energy can be considered a
scalar, which is relevant to the structure of the local neighbors, as
shown in Fig. 1. With the local descriptor of terrain integrated into
the threshold determination, the critical problems faced by all sur-
face filters, such as complex scenes, large scarps, and breaklines,
can be alleviated. With these enhancements, the algorithm is resil-
ient with respect to parameter tuning, resulting in more stable out-
comes. The entire workflow consists of two parts, i.e., preprocessing
and filtering, as shown in Fig. 2.

Due to the ability of laser pulses to penetrate vegetation, several
returns may be recorded in a single laser emission. It is only
possible for the final return of multiple returns to be a ground
point. As a result, only the final returns are considered to be ground
candidates. The points that have only one return are also reserved
for successive processing. In addition, the data used in this study
only comprise points from the final single return.

Based on the local minimum constraint, the lowest points in
a local square window are commonly used as the initial ground
points because of their simplicity and efficiency (Chen et al.,
2013). Unfortunately, as a consequence of the multi-path reflex
and other errors, low outliers will cause incorrect initial ground
control points and must be eliminated beforehand (Mongus and
Žalik, 2012) or handled during the filtering process (Haugerud
and Harding, 2001). Because these outliers are rare and usually
reside far from other points, the low outliers can be simply re-
moved by an outlier filtering technique for point clouds, such
as radius removal or statistical removal filters, which are pub-
licly available (Rusu and Cousins, 2011). These outlier filters
are general-purpose methods to remove isolated points, e.g.,
birds, power lines and occasionally solitary ground points. The
radius removal filter will remove the points whose number of
neighbor points in the range of a user-defined radius is less than
a certain number. In most cases, the radius removal filter is used
in our study because of its flexibility when handling various sit-
uations, ranging from no outliers to clamped outliers. The radius
search can be efficiently implemented based on a k-d tree (Muja
and Lowe, 2009) with an algorithm complexity of O(logn). The
search radius is chosen according to the point density. Based
on the assumption that the points are evenly distributed in the
area, the number of points lying within the search circle in the
planar direction is proportional to the area of the circle. There-
fore, a larger radius will preserve more points, and a large
expected number of points will remove more points. The outliers
removed here are not considered in the iterative filtering proce-
dure but will be reclassified as either ground or non-ground
during post-processing.

After removing the low outliers, the local minimum points are
confirmed as correct ground points. Then, the data pyramids can
be built from the remaining points. Instead of the bottom-up fash-
ion utilized in the work by (Mongus and Žalik, 2012), we use a top-
down approach because the step factor (denoted as s) between
each level in the pyramid is not two. As a result, there is no rigor-
ous quad-tree structure. We choose the lowest point in a moving
window for the corresponding pyramid level. The window size
for the top level (denoted as max_window) is determined by the
size of the largest object in the area. Generally, max_window = 30 m
is used in this study. In addition, the window size for the bottom
level is related to the point density. For intermediate levels, the
window size is determined by s, which will be detailed in
Section 2.2.

The filtering algorithm consists of two iterations, the outer and
the inner, as shown in Fig. 2. For the outer iteration, all levels in the
data pyramids are traversed, whereas for the inner iteration, the
unclassified points are tested against the surface interpolated with
the ground points. For each level/scale in the pyramid, we intro-
duce a parameter (denoted as scale_gain) to the filter threshold,
similar to the work of Evans and Hudak (2007). Furthermore, to ex-
ploit the bending energy to adaptively change the threshold, bend-
ing energy must be transformed into a threshold compensation
(denoted as bend_gain) and amended with a binary indicator (de-
noted as bend_mask), which will be explained in Section 2.4. For
detailed calculations of the TPS surface and the bending energy,
please refer to the work of Elonen (2005). The filtering procedure
of the ASF is as follows.

(1) Create a vector that records the ground points (denoted as G)
and another vector that records the unclassified points
(denoted as U).

http://www.itc.nl/isprswgIII-3/filtertest
http://www.itc.nl/isprswgIII-3/filtertest


Fig. 1. Descriptions of the bending energy and the transformed compensation value generated during interpolation of the corresponding raster surface. (a) The interpolated
raster surface, (b) the generated bending energy as a by-product of the TPS interpolation and (c) the transformed bend_gain by piece-wise linear interpolation from the
bending energy raster given a upper bound of 0.3 m. The dashed curves in (a) and (b) represent the same ridge.
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(2) Initialize G with the points in the top level of the pyramid
and U with the points in the next level.

(3) For each level of points in the data pyramid, perform the fol-
lowing filter processing iteratively:

i. Calculate the regularization parameter k and scale_gain
based on the pyramid level. Parameter k increases linearly
from 0 to the maximum value when progressing from the
top to the bottom (cf. Section 2.2). In contrast, the scale_gain
decreases from the maximum value to 0, which is similar to
previous works (Evans and Hudak, 2007; Chen et al., 2013).
The maximum values of k and scale_gain are constantly
determined by 0.5 m and 0.3 m, respectively.

ii. Create a raster DEM at the corresponding scale using reg-
ularized TPS interpolation from points in G. Because of
the border effects, there might be no points around the
grids on the border, in this case, we detect these grids
and mark them as no data. In addition, the by-products
of the TPS interpolation procedure are a raster denoting
the bending energy for each grid and a raster for
bend_mask.

iii. Transform the bending energy raster into bend_gain using
piece-wise linear interpolation over the range from 0 to an
upper bound, as depicted in Fig. 1c.

iv. Filter the points in U based on the threshold zt and the ele-
vations of the 3 � 3 neighbor cells in the DEM. The threshold
is jointly determined using the following Eq. (1):

zt ¼ t þ scale gainþ bend gain� bend mask ð1Þ

where t is a user-defined parameter; in this study, values from
0.1 m to 0.5 m are used. If the point elevation does not exceed 5
of 9 cell elevations plus zt, then it is assigned to G, which is inspired
from the work by Chen et al. (2013).
v. Update G and U, and check the terminal criteria. If the new
ground points are less than a certain amount, insert the
points in the next level into U and proceed with the filtering.
Otherwise, repeat (i) to (iv).

(4) Filter the points considered to be outliers during preprocess-
ing with the same zt defined in Eq. (1). However, another cri-
terion for a point to be classified as ground is considered. The
elevation must exceed the DEM elevation minus 3 m
(Haugerud and Harding, 2001). Otherwise, it is considered
as a low outlier and assigned into U.

(5) Label the points in G as ground and the points that remain in
U as non-ground.

2.2. Step factor for constructing the pyramid

The step factor (s) controls the granularity between adjacent
levels in the pyramid. When s = 2 is used, the pyramid has a
quad-tree structure exactly, and if s approaches infinity, the
coarse-to-fine strategy is entirely abandoned. The interval window
sizes are multiplied by s from the level below. From the top level,
all of the points are arranged into a regular grid at the cell resolu-
tion of the corresponding window size. Each grid cell may include a
series of points, and only the lowest points in each cell are retained
for this level before their removal from the dataset and proceeding
to the next level. The process repeats to the bottom level. s = 1.2 is
used in this study rather than the value of two, which is common
among all other studies of data pyramid construction (Pfeifer et al.,
2001; Mongus and Žalik, 2012). The reason for the progressive
movement toward the bottom level is that if the value two is used,
the number of points in the next level is three times greater in
comparison with an increase of approximately 50% when s = 1.2
is chosen. If more points are tested against a relatively coarser level



Fig. 2. Flowchart of the ASF to produce classified point clouds and DEM from the unclassified ALS data.
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of surface in a single iteration, the filter process will become more
inclined to misclassification. In addition, any misclassifications in
the procedure are not only irreversible but also magnified in the
following iterations. Furthermore, with a small step factor, the ele-
vation difference between each level is slowly increased and thus
loses more ground details.

2.3. Regularization for noise handling

In 3-D space, TPS is the solution to the following regularization
problem, which is used to find a continuous and smooth surface
(Szeliski, 2011):

e ¼
Xn

i¼1

ðzi � f ðxi; yiÞÞ
2 þ k

Z
f 2
xxðx; yÞ þ 2f 2

xyðx; yÞ þ f 2
yyðx; yÞdxdy ð2Þ

where the former part, e1 ¼
Pn

i¼1ðzi � f ðxi; yiÞÞ
2, is referred to as the

data term (Szeliski, 2011), which measures the fitness of the surface
and the control points, and the latter portion, e2 ¼

R
f 2
xxðx; yÞþ

2f 2
xyðx; yÞ þ f 2

yyðx; yÞdxdy, which is normally called the smoothness
penalty in an energy minimization problem (Morse et al., 2005;
Szeliski, 2011). In the case of 3-D space, if the regularization param-
eter k = 0, no regularization is imposed, and the surface will pass ex-
actly through all of the given points, which results in a perfect data
fitness (e1 = 0). No regularization was used in all the previous
TPS-based interpolation filters (Evans and Hudak, 2007; Mongus
and Žalik, 2012; Chen et al., 2013). In contrast, as k approaches
infinity (over regularized), the surface reduces to a least-square
fitted plane, which is a completely smooth surface in theory
(e2 = 0) (Elonen, 2005). In addition, intermediate values of k will
produce a compromise between the fitness of the data and the
smoothness of the surface.

When noise clutters the ground points during filtering, the opti-
mization obtained from regularization is crucial for deriving a
ground surface that is resistant to errors. As shown in Fig. 3, some
object points will not be rejected, such as the shaded area in Fig. 3b
and c. If not regularized, the ground surface will pass exactly
through each ground point, as indicated by the dashed line in
Fig. 3b and in the following iterations, the ground points may climb
up, accepting all of the object points in the same spot as the final
dotted surface in Fig. 3b. In contrast, although noise still exists
after the first iteration, the interpolated surface will not pass ex-
actly through all of the points and generate a regularized surface.
In this manner, the subsequent iterations will not magnify the
errors.

However, the advantage of regularization comes at the cost of
the loss of some terrain details, as expressed by the final surface
with the slope where the ground surface will not exactly pass
through the ground points as depicted in Fig. 3c. Thus, k must be
selected scrupulously when compromising between resilience to
noise and preserving detailed information. When applied to inter-
polate a ground surface in the filtering algorithm, an intuitive con-
sideration in determining k is that it should be related with the
amount of noise in the ground points and more specifically, it is
a positive correlation. In the filtering procedure, the initial ground
points are assured to be ground points, and noises increase with



Fig. 3. Effects of the regularization parameter in resisting magnification of noise points during the iterative filter process. (a) The ground surface interpolated with initial
ground points, (b) the iterative filter process without regularization (k = 0) and (c) the iterative filter process with proper regularization. The upward arrows in (b) refer to the
climbing-up effects of the noise points without regularization, and the downward arrows in (c) denote the regularized effects on the ground surface that facilitate avoidance
of propagating the noise points.
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the progressive densification. Therefore, in a pyramid scheme, a
possible strategy is to change k according to the levels of the pyr-
amid adaptively. In our method, linear interpolation from 0 to 0.5
is used when processing from the top level to the bottom level.
2.4. Bending energy for threshold adaption

As described above, the filter threshold must vary according to
the different terrain features. To compensate for landform varia-
tions, the magnitude of the curvature must be quantitatively
gauged. Furthermore, the relationship between the measurements
and threshold compensations should be related to a parametric
function. The bending energy of the TPS is used to measure the
roughness, and it is simultaneously obtained using the calculation
of the TPS (Elonen, 2005). The threshold that distinguishes the
ground and non-ground points is compensated with the parameter
bend_gain, which is related to the bending energy to account for
complex terrain features. The bend_gain should be monotonously
increasing for an increasingly rugged spot. Thus, the intuitive
relationship between bending energy and bend_gain may be a lin-
ear interpolation after defining the upper bound (denoted as
max_bend_gain). However, if extremely large values of the bending
energy exist, a more robust approach is piecewise linear interpola-
tion, as shown in Fig. 1c.

Unfortunately, we also discovered that roughness is only a nec-
essary condition against bend_gain, rather than a sufficient condi-
tion. More explicitly, a greater roughness, in some cases, should
not result in a larger compensation, as explained in Fig. 4. In the
procedure of iterative filtering, some ground points on sharp ridges
may be labeled as unclassified because of the local minimum con-
straint. It is probable that the TPS interpolated surface is lower
than the ground surface, so the proposed relationship between
bending energy and bend_gain is tenable in this situation. However,
in a valley scenario, the relationship is not valid. Although the
interpolated TPS will generate a large bending energy in this situ-
ation, it may be higher than the actual ground when regularization
is adopted, and no compensation should be assigned. In this case, a
binary mask raster bend_mask is used to amend the situation. The
bend_mask is assigned with the simultaneous interpolation of each
grid. If the interpolated grid elevation is larger than the average
elevation of its 12 nearest neighbor points, bend_mask = 1 is used,
which means the bend_gain is positive. Otherwise, bend_mask = 0
is used to deny the compensation for the latter scenario. Therefore,
the final compensation for the threshold is the product of
bend_gain and bend_mask as in Eq. (1). We have found that this
strategy is efficient for dealing with sharp ridges and large scarps.

3. Experimental results and analysis

To compare the proposed ASF filter with previous algorithms,
benchmark datasets, provided by ISPRS Commission III, Working
Group III (http://www.itc.nl/isprswgIII-3/filtertest/) (Vosselman,
2003), were employed to test our algorithm. Fifteen reference sam-
ples from seven sites are compiled with a binary indicator as either
bare-earth or object points using semi-automatic filtering and sub-
sequent manual editing. First, the evaluation paradigm used in the
work by Sithole and Vosselman (2004) is adopted for quantitative
and qualitative evaluations of performance, and explicit compari-
sons between ten other methods prove the high performance of
the proposed method. In addition, we discuss and explain two of
the characteristics of the ASF in detail. Furthermore, we analyze
the effects of the three novel aspects using experimental valida-
tions and detailed discussions.

3.1. Performance evaluation and comparison

Three accuracy metrics were proposed by Sithole and Vosselman
(2004) for the quantitative analysis of the filter performance,
including Type I (T.I) error, Type II (T.II) error and Total error
(T.E.), which represent the proportion of bare-earth points being
misclassified as objects, failure to rejecting object points and the
entire set of erroneous points, respectively (Sithole and Vosselman,
2004). Furthermore, Cohen’s kappa coefficient (j) (Congalton,
1991), which is a statistical measure of the inter-ratio agreement
and is believed to be a more robust measurement than a simple per-
centage, has been widely used in previous works (Silván-Cárdenas

http://www.itc.nl/isprswgIII-3/filtertest/


Fig. 4. Correction of the false bending compensation in case of the valley area. The upward arrows indicates the effects of the bending energy, which compensates for the
filtering threshold to correctly label the unclassified points on the sharp ridges as ground points.
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and Wang, 2006; Chen et al., 2013; Pingel et al., 2013). We also in-
clude a comparison of j with other works in the present study. The
report by Vosselman (2003) provided the calculations of T.I, T.II and
T.E., and the calculation of j is presented intuitively and mathe-
matically in the study of Congalton (1991). For completeness, we
summarize these works in Table 1, and the four metrics are based
on the inputs in the cross-matrix only (Sithole and Vosselman,
2004) as denoted by the shaded values in Table 1.

Three parameters are specifically tuned for the ASF, including
the max_window for the window size of top level in the data pyra-
mid, the threshold t as mentioned in Eq. (1) and the max_bend_gain
for the upper bound of the bending energy compensation. To
achieve the optimal results, we exhaust all the combinations from
the configuration space of the three parameters in the ASF. The
configuration space is defined using the three tuned parameters,
where max_window 2 [5,40] at the interval of 5 m, t 2 [0.1,0.5] at
the interval of 0.1 m and max_bend_gain 2 [0.1,1] at the interval
of 0.1 m. The range for each parameter was determined by the
authors’ practical experiences. For this configuration space, the re-
sults for a single reference sample consist of 400 tests. For each
sample, the parameter set that achieves the minimum T.E. was
Table 1
Calculation equations of T.I, T.II, T.E. and j for the quantitative evaluations of the ALS filter
matrix only where a and d are the numbers for correctly identified bare-earth and object po
earth and object points, respectively.
chosen as the optimum, as shown in Table 2. Furthermore, the con-
figuration that achieves the best average T.E. among all the 15 sam-
ples was selected as the most stable parameter set.

Table 2 shows the ASF accuracy results tested against the 15
benchmark reference samples. With respect to the optimized re-
sults, the overall average total error and j coefficient are 2.85%
and 90.29%, respectively, and the median accuracies improved to
2.52% and 92.04% because the median is statistically more robust
to gross error. In addition, for a single parameter set, an average
T.E. of 3.67% and j of 87.01% were achieved. In terms of the individ-
ual sample accuracy, samp11 has the largest total error, and
samp53 has the worst j statistic values. For the former sample,
nearly all of the filters produce poor results due to the complex
configuration of steep slopes, buildings and low vegetation. In
addition, the achieved accuracy is already among the best. For
the latter sample, the abnormally small j is the result of the very
low number of object points in that sample, which causes Pr(e)
to approach Pr(a), with values of 0.92 and 0.9726, respectively, as
denoted in Table 1, thus creating the poorest j coefficient. How-
ever, the achieved result on samp53 is on par with the best (Pingel
et al., 2013) and represents a significant improvement in
ing algorithms. The four metrics are based on the four inputs (a, b, c, d) in the cross-
ints, respectively, and the other two parameters are the numbers of misclassified bare-



Table 2
Performance evaluations of the ASF on T.I, T.II, T.E. and j for the reference datasets provided by ISPRS and the corresponding parameters. For the single parameter set results, the
parameters were selected as max_window = 30 m, t = 0.3 m, and max_bend_gain = 0.5 m.

Study site Major terrain type Parameter configurations Optimized results Results on single parameter set

max_window (m) t (m) max_bend_gain (m) T.I (%) T.II (%) T.E. (%) j (%) T.I (%) T.II (%) T.E. (%) j (%)

samp11 Steep slope 35 0.3 0.5 6.32 10.98 8.31 82.97 6.41 11.07 8.40 82.78
samp12 Flat 20 0.3 0.2 1.75 3.45 2.58 94.83 1.15 4.91 2.99 94.02
samp21 Bridge 30 0.3 0.1 0.36 3.03 0.95 97.23 0.03 8.56 1.92 94.26
samp22 Common 30 0.4 0.3 1.67 6.69 3.23 92.04 1.67 7.54 3.50 91.76
samp23 Complex 35 0.4 0.1 4.73 4.07 4.42 91.14 4.55 4.97 4.75 90.47
samp24 Ramp and vegetation 20 0.3 0.4 2.19 8.07 3.80 90.39 2.10 9.48 4.12 89.52
samp31 Negative blunders 30 0.2 0.1 0.50 1.37 0.90 98.19 0.06 7.00 3.26 93.41
samp41 Discontinuousness 25 0.4 0.2 2.95 8.86 5.91 88.18 3.00 9.52 6.27 87.47
samp42 Railway 35 0.4 0.3 0.39 0.87 0.73 98.25 0.47 1.52 1.21 97.10
samp51 Slope and low vegetation 30 0.2 0.2 0.53 7.46 2.04 93.90 0.12 12.30 2.78 91.49
samp52 Steep slope 20 0.2 1 1.07 14.90 2.52 86.24 2.25 11.09 3.18 83.69
samp53 Break lines 5 0.4 1 1.63 38.75 2.74 66.43 5.40 11.95 5.67 53.06
samp54 Village 15 0.2 0.2 2.33 2.36 2.35 95.28 1.51 3.74 2.71 94.57
samp61 Embankments 5 0.5 0.4 0.27 16.75 0.84 86.76 2.19 8.62 2.41 71.08
samp71 Bridge 30 0.4 0.4 0.93 5.93 1.50 92.59 0.75 10.56 1.86 90.54

Mean 1.84 8.90 2.85 90.29 2.11 8.19 3.67 87.01
Median 1.63 6.69 2.52 92.04 1.67 8.62 3.18 90.54
Maximum 6.32 38.75 8.31 98.25 6.41 12.30 8.40 97.10
Minimum 0.27 0.87 0.73 66.43 0.03 1.52 1.21 53.06
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comparison with previous interpolation-based filters with the TPS
(Chen et al., 2013).

To conclude the discussion of the performance results shown in
Table 2, we will demonstrate two characteristics of the proposed
ASF algorithm. First, a tendency to T.II error was discovered for
both of the optimized results and those of a single configuration.
T.II exceed T.I errors in almost all the samples, and the average
T.II errors are approximately four times larger, as shown in Table 2.
In fact, this tendency is also shared by previous methods based on
the strategy of ground point densification (Axelsson, 2000; Mongus
and Žalik, 2012; Chen et al., 2013; Zhang and Lin, 2013). The rea-
sons for this inclination may be twofold. The first reason is that
the numbers of object points in these datasets are generally less
than the ground points, and sometimes the object points comprise
only 30% or even approximately 3% (samp53 and samp61) of all the
points. Thus, only a few object points being misclassified as bare-
earth will result in a large T.II error. Second, a more explicit reason
originates from the strategy of ground point densification. As
previously stated, the ground points will be predominantly con-
taminated with objects in the iterative processing. Thus, the inter-
mediate ground surface may have higher spikes or protuberances
Fig. 5. Distribution of T.E. from tests on 15 reference samples with 25 parameter configur
0.3, 0.4, 0.5}). The blue bar shows the numbers of T.E. in a certain range, and the red line r
references to color in this figure legend, the reader is referred to the web version of thi
above the ground. In return, the ground points are more likely to
be correctly classified, thereby resulting in fewer T.I errors around
the noise sources. However, the inclination to T.II errors may not be
a flaw for the filter strategy, taking into consideration that T.II er-
rors can be more easily handled by human editing than T.I errors
(Sithole and Vosselman, 2004; Zhang and Lin, 2013).

The other characteristic is that the ASF method is not only supe-
rior in performance but also stable and insensitive to parameter
tuning under varying terrain features and complex situations.
These advantages are confirmed by the results from a single config-
uration that produces a T.E. of less than 5% in most of samples, and
even the worst case still produces a low value of 8.4%, as shown in
Table 2. Furthermore, we performed another experiment with
varying configurations to confirm the robustness of the ASF. The
configuration space in this experiment is max_window = 30 m,
t 2 [0.1,0.5] and max_bend_gain 2 [0.1,0.5], which includes 25 con-
figurations for a sample, and 375 results are obtained in total. The
distribution of T.E. for all the results is shown in the histogram in
Fig. 5. We find that most of the T.E. values are concentrated be-
tween 1% and 6%, which comprise approximately 75% of all the
samples. In addition, 359 out of 375 tests produced results of T.E.
ations (max_window = 30 m, t 2 {0.1, 0.2, 0.3, 0.4, 0.5} and max_bend_gain 2 {0.1, 0.2,
epresents the accumulated percentage of the distribution. (For interpretation of the

s article.)



Fig. 6. Comparison of T.E. for each reference sample with 10 previous works from 1999 to 2013. The ASF results are marked by the red bar, and the colored numbers in the
following table denote the best results across all the methods. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 7. Comparison of j coefficient for each reference sample with 7 previous works from 1999 to 2013. The ASF results are marked by the red bar, and the colored numbers in
the following table denote the best results across all the methods. Because j was not provided in the works of (Mongus and Žalik, 2012; Li, 2013; Zhang and Lin, 2013), they
are omitted here. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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values of less than 10%, which confirms that ASF can provide stable
performance over a wide range of reasonable parameters. The
robustness in the performance lies in the enhancements of the
implementation details embedded in the entire workflow of
the ASF. First, the pyramid scheme amended by a small step factor
divides the original point clouds into more levels and results in the
elevation differences between each level being smaller than that of
the previous methods (Mongus and Žalik, 2012), which establishes
a basis for handling noise in the filtering procedure. Second, the
regularization applied in the TPS results in the interpolated ground
surface being resilient to ground points with mixed objects. Finally,
the bending energy is embedded into the filtering stage, which
makes the proposed method adaptable to various difficult
scenarios.

Turning the focus to a comparison with the previous filters, ten
algorithms developed between 1999 and 2013 were used for the
performance evaluations in terms of T.E. and the j coefficient, as
shown in Figs. 6 and 7. Briefly, the ASF achieves the best perfor-
mance in seven and six of fifteen samples for T.E. and j, respec-
tively, and is the best in terms of the average values.
Furthermore, for the remaining samples, the accuracy achieved is
stable and among the best. When compared to the direct predeces-
sors of the ASF based on TPS interpolation (Mongus and Žalik,
2012; Chen et al., 2013), ASF achieves better results in almost all
the cases and provides approximately 30% and 50% performance
improvements in terms of the average T.E. Because fundamental
strategies are commonly shared among these filters, accuracy
enhancements must be attributed to the enhanced implementa-
tion details of the ASF. With regards to the comparison between
the two filters based on PTD (Axelsson, 2000; Zhang and Lin,
2013), the ASF performance exceeds the performance of both of
them. Although the surface represented by TIN is able to handle
point density variations, the local ground surface is only relevant
with three vertices and is expressed by a triangle that is simply a
plane and is quite sensitive to noise. As a result, the filter threshold
and strategy must be meticulously crafted. Otherwise, filters based
on PTD may not yield the desired performance. In contrast, ASF ex-
ploits regularization embedded in the TPS interpolation to handle
errors and is thus more robust. The improved morphological-based
filter by Pingel et al. (2013) achieved comparable results compared
to ours in almost all the samples with optimized parameters. How-
ever, with a fixed parameter set, the average T.E. decreases to 4.4%,
which is approximately 20% inferior to that achieved by the ASF
(3.67%). Furthermore, their method consists of four parameters,



Fig. 8. Filtering results for samp11. (a) The reference DEM, (b) the filtered DEM, (c) the distribution of T.I and T.II errors. The two small holes indicated by the dashed rectangle
are created by incorrect classification of low outliers in post-processing. The areas enclosed in the rectangles show the consequences of misclassification of low objects on the
steep slope.

Fig. 9. Filtering results for samp42. (a) The reference DEM, (b) the filtered DEM, (c) the distribution of T.I and T.II errors. The overall accuracy is quite good except for the small
protuberance because of several misclassified points on the roof of the platform that may be wrongly filtered because of a lack of nearby ground point.
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which are tuned at a more fine-grained level and over a larger
scope. In fact, the sensitivity to parameters is the major drawback
for morphological-based filters when compared to the interpo-
lated-based methods (Mongus and Žalik, 2012).

To evaluate qualitatively the performance of the ASF for various
scenarios, we provide the filtering results for four samples as
shown in Figs. 8–11. The four samples represent miscellaneous dif-
ficulties from urban to rural areas. First, samp11 is a complex mix-
ture of buildings and vegetation on a steep slope. Second, samp42
is a railway station, where a low number of bare-earth points exist.
Third, samp51 consists of data gaps and low vegetation on a slope.
Lastly, samp71 has a bridge. The visualizations of the filtered DEMs
exhibit nearly the same appearances with the reference DEMs in all
the samples, and the error points are sparse in general. In fact, all
the difficult scenarios have already been sufficiently addressed.
However, we will explore further details for some recognizable dif-
ferences between the filtered DEM and the reference DEM due to the
complexity of the scenarios. The small holes in the middle of Fig. 8b
as denoted by the dashed rectangle are the consequences of two
misclassified low outlier points. The low outliers were actually de-
tected in the preprocessing by the radius removal filter, but because
the elevations are close to the ground, they are incorrectly labeled as
bare-earth in the post-processing. Furthermore, clamped T.II errors
are found in samp11 due to the configuration of the low objects
and the steep slopes. The rough area in samp42 along the slope, as
shown in Fig. 10b, is due to the impacts of misclassified very low ob-
jects, most of which are only less than 0.5 m above the slope ground.

3.2. Experiments analysis

To analyze further the effects of the three contributions em-
ployed in this study, we performed three comparative experiments
using the leave-one-out method with respect to the step factor,
regularization effects and bending energy effects.

3.2.1. Effects of the step factor
To characterize the effects of the step factor when building the

data pyramid rather than using a constant of two, we evaluated
four samples, which contain buildings, slopes and vegetation, using
varying step factors (s 2 [1.2,2.2] at the interval of 0.05). The other
parameters are the same as those in Table 2 and held fixed. The
three types of error for the entire results are plotted in Fig. 12.



Fig. 10. Filtering results for samp51. (a) The reference DEM, (b) the filtered DEM, (c) the distribution of T.I and T.II errors. The roughness denoted by the rectangle in (b) along
the slope is created by scattered T.II errors for the very low objects, and the data gap in (c) is handled well.

Fig. 11. Filtering results for samp71. (a) The reference DEM, (b) the filtered DEM, (c) the distribution of T.I and T.II errors. The bridge is correctly removed.
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The relationship between the three error metrics and s is consis-
tent in all samples: the T.II errors decrease moderately at the cost
of a significant increase in the T.I errors, which thus results in an
increasing total error. In addition, T.II errors exhibit no further
noticeable improvements after s increases to 1.5.

The reason for the significant reduction of T.I errors with slowly
increased window size (small s) can be explained by exploring the
procedure of constructing the data pyramid. When building the
data pyramid, points with minimum elevation are assigned to a
previous level and then removed from the points that are respon-
sible for the next level. With an inconspicuous difference between
the adjacent pyramid levels, the elevation differences between the
two levels are also subtle and thus accept more ground points.
Accordingly, the TPS surface will gradually approach the final
ground with more bare-earth points and fewer T.I errors. More
bare-earth points will absolutely increase the risk of T.II error.
However, because the errors are effectively handled by ASF, they
are controlled to an acceptable level.
3.2.2. Effects of regularization
The regularization parameter k, as described in Eq. (2), controls

the balance between the fitness of the data and the smoothness of
the surface. As discussed above, the merits of TPS with regulariza-
tion for surmounting the occurrence of noise points in the iterative
procedure are the reason for its excellence in ALS filtering. How-
ever, the loss of ground details accompanies the resilience to er-
rors. We will illustrate both the advantages and disadvantages of
regularization with experimental validations.

To confirm the advantages of the procedure, we used four sam-
ples to create the filter results, with and without regularization,
whereas all other parameters remained the same. Fig. 13 presents
the T.II errors overlaid onto the TIN surface generated from the fil-
tered bare-earth points. In the top row for each sample, although
there are some errors around the large building, these errors will
not be magnified in the next iteration when regularization is ap-
plied. However, when regularization is deliberately turned off as
shown in the bottom row of Fig. 13, even some points on the



Fig. 12. Effects of the step factor in progressively building the data pyramid for the four samples on different scenarios: (a) samp11 for mixed buildings and vegetation on
slope, (b) samp23 for typical building area, (c) samp51 for low vegetation and (d) samp52 for steep and terraced slopes. Conclusions can be drawn from various terrain types
that T.I errors will greatly increase with a larger scale factor, and T.II errors will decrease mildly, which jointly results in an increasing of T.E.

Fig. 13. Effects of regularization employed in TPS interpolation in four samples. The top row for each sample represents the T.II errors (red points) overlaid on the TIN surface
with regularization (k = 0.5), and the bottom row represents the T.II errors overlaid on TIN surface without regularization (k = 0). The misclassified points consist of some low
objects or points on the facade. Without regularization, the T.II errors will propagate through these points and climb up to the roof. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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rooftop will be misclassified. As explained in the magnified view
for the building, some low points are attached to a small object
and building facades, and they are first misclassified in the iterative
procedure. Because no regularization is used in the interpolation,
the surface must pass exactly through the points on the façade
or low objects. In the following iterations, the misclassified points
clinging to the building act as the stairs and allow higher points on
the building to be labeled as ground. When using proper regulari-
zation, a large smoothing penalty will occur at the spot of the mis-
classified noises because the elevation of an object is commonly



Fig. 14. T.I errors overlaid on samp53 with different parameter sets. (a) Filtering results with k = 0.5, max_bend_gain = 0 m; (b) Filtering results k = 0.5, max_bend_gain = 1.0 m;
(c) Filtering results with k = 1.5, max_bend_gain = 1.0 m. All the other parameters are the same with the optimized configurations as shown in Table 2. More T.I (blue points)
errors are observed on the breaklines area denoted by rectangles in (a) and (c) due to lack of bending energy compensation and over-regularization, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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higher than its neighbor ground points (Sithole, 2001). Thus, the
regularized surface will be lower than the elevation of the noise
points as explained in Fig. 3c, and in this way, avoids the climb-
ing-up effects. The regularization is essentially important for urban
areas, where buildings may have low attachments, such as balco-
nies and points on the façade, or where they will be affected by
nearby low objects (cars or fences).

However, one drawback of regularization as described in the
slope area in Fig. 3c is the loss of ground detail in the interpolation.
An over-regularized surface will grant unnecessarily high weights
on smoothness and result in poor data fit. Although smoothness
is sometimes a tenable assumption for terrain, it fails under in
situations with breaklines, e.g., samp53, as shown in Fig. 14c. Even
with the same optimized parameter set, considerably more T.I
errors exist on the breaklines when over-regularized compared
to Fig. 14b, and the T.E. decreases to 4.08% accordingly. In fact,
we achieved a better result even without regularization in samp53
with a T.E. of 2.41%, which is slightly better than the result in
Table 2. Thus, over-regularization is inappropriate, and, in our
experience, the case of k = 0.5 (at the bottom level) is a good
balance between the data term and the smoothness term that will
consistently achieve stable performance.

3.2.3. Effects of the bending energy
Bending energy is used to remedy the problem of a single

threshold against the varying terrain features. Samp53 was used
to verify the effects of the compensation using bending energy be-
cause it possesses both flat terrain and breaklines. Fig. 14 compares
the results without (by setting max_bend_gain = 0) and with the
proposed compensation. In Fig. 14a, almost all the breaklines will
cause T.I errors with a constant threshold, and the errors all exist
in the higher part of a discontinuous area, as stressed by the rect-
angular region. This drawback is shared by almost all the previous
surface filters in this sample (Sithole and Vosselman, 2004). How-
ever, with bending energy compensation (max_bend_gain = 1.0 m),
the problem is relieved because, in places where a discontinuity
exists, the interpolated TPS surface predominantly results in a
larger bending energy. As a result, a larger compensation of the fil-
tering threshold is required to correctly accept points on the edges
of breaklines as ground.

4. Conclusions

Filtering of ALS point clouds is generally an obligatory step be-
fore its use in other applications and remains an open topic to date
(Zhang and Lin, 2013). The proposed ASF uses an improved coarse-
to-fine pyramid scheme. The window sizes between two adjacent
levels are multiplied by a step factor of 1.2 rather than a uniform
factor of 2. The method iteratively interpolates the TPS surface to
the bottom level. In the interpolation procedure, regularization is
exploited to handle noise points, and the bending energy is re-
trieved to represent the roughness of the local surface and then
used to adaptively change the filter threshold under varying terrain
scenarios. As a result, the ASF displayed improved performance
over its direct predecessor (Evans and Hudak, 2007; Mongus and
Žalik, 2012; Chen et al., 2013) by a factor of approximately 30%
in terms of the T.E. and was the best in terms of powerful when
tested against the ISPRS benchmark datasets. Furthermore, the ASF
can create more robust and good results, even when using the same
parameter set, and improves the overall accuracy of the filter
process. Future works will be devoted to developing a more sophis-
ticated strategy for the compensation of local terrain structure.
Furthermore, the full-waveform LiDAR (Mallet and Bretar, 2009)
provides a new opportunity to integrate information extracted from
the waveform energy into the classification process and to improve
the performance and robustness of the algorithms further.
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